Strong Convergence Theorem by Monotone Hybrid Algorithm for Equilibrium Problems, Hemirelatively Nonexpansive Mappings, and Maximal Monotone Operators

نویسندگان

  • Yun Cheng
  • Ming Tian
  • Wataru Takahashi
چکیده

We introduce a new hybrid iterative algorithm for finding a common element of the set of fixed points of hemirelatively nonexpansive mappings and the set of solutions of an equilibrium problem and for finding a common element of the set of zero points of maximal monotone operators and the set of solutions of an equilibrium problem in a Banach space. Using this theorem, we obtain three new results for finding a solution of an equilibrium problem, a fixed point of a hemirelatively nonexpnasive mapping, and a zero point of maximal monotone operators in a Banach space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Convergence of Monotone Hybrid Method for Maximal Monotone Operators and Hemirelatively Nonexpansive Mappings

We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Ban...

متن کامل

Hybrid Algorithm for Common Fixed Points of Uniformly Closed Countable Families of Hemirelatively Nonexpansive Mappings and Applications

The authors have obtained the following results: 1 the definition of uniformly closed countable family of nonlinear mappings, 2 strong convergence theorem by the monotone hybrid algorithm for two countable families of hemirelatively nonexpansive mappings in a Banach space with new method of proof, 3 two examples of uniformly closed countable families of nonlinear mappings and applications, 4 an...

متن کامل

A modified Mann iterative scheme by generalized f-projection for a countable family of relatively quasi-nonexpansive mappings and a system of generalized mixed equilibrium problems

The purpose of this paper is to introduce a new hybrid projection method based on modified Mann iterative scheme by the generalized f-projection operator for a countable family of relatively quasi-nonexpansive mappings and the solutions of the system of generalized mixed equilibrium problems. Furthermore, we prove the strong convergence theorem for a countable family of relatively quasi-nonexpa...

متن کامل

Strong Convergence of Monotone Hybrid Algorithm for Hemi-Relatively Nonexpansive Mappings

The purpose of this article is to prove strong convergence theorems for fixed points of closed hemirelatively nonexpansive mappings. In order to get these convergence theorems, the monotone hybrid iteration method is presented and is used to approximate those fixed points. Note that the hybrid iteration method presented by S. Matsushita and W. Takahashi can be used for relatively nonexpansive m...

متن کامل

A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces

Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008